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Abstract

We built a simple AR technology not using deep learning
approach, but only the traditional computer vision method.
The ultimate goal of our project is displaying virtual cubes
on the dominant plane of the arbitrary videos. In contrast
to other works, it does not require any predefined spaces or
objects. The only assumption is 10cm translation to right
side for the first few seconds of the videos. We implemented
camera calibration, 3D map initialization, dominant plane
selection, 2D point tracking, camera tracking, cube projec-
tion, and several innovative error handling methods to de-
velop significantly stable and precise AR model. It can dis-
play the cubes on the videos from not only the fast moving
camera, but also the camera that are entirely out of the ini-
tial position and direction. Furthermore, it takes only 0.015
seconds per each frame to handle 1920×1080 videos, which
can be implemented in real-time operation. We release our
project and public manual at https://github.com/
Jjihwan/2023S_SNU_CV_Project

1. Introduction
1.1. Augmented Reality(AR)

Augmented Reality(AR) is a technology that combines
the real world and the virtual world so that they can interact
between them. This differs from VR(Virtual Reality),
which creates an independent virtual world, in that it dis-
plays virtual objects on the actual surrounding environment.
AR can be defined as following three characteristics. [1]

1) The combination of real and virual worlds
2) Real-time interactions
3) Accurate 3D registration of virtual and real objects

All of these features should basically presuppose accu-
rate 3D reconstruction of the surrounding environment. For
example, to display a virtual object in a desired location on

Figure 1. Epipolar geometry

the real world, you need to know the 3D world coordinate in
the desired location. In addition, in order to display the vir-
tual object on the screen, it is necessary to be able to project
the object into a plane by tracking the location and direction
of the camera. However, the only way to get information
about the surroundings are 2D images from videos. That is,
it is necessary to solve the problem of reconstructing the 3D
world from the 2D input images by the camera.

1.2. objectives

Our project aims to implement AR by exploiting tradi-
tional computer vision technologies such as Stereo Vision,
epipolar geometry, feature descriptor, RANSAC, and ro-
bust fitting. The ultimate goal is displaying virtual cubes
on videos from naturally move and shoot over a space that
is not predefined. Especially, since we pursues a model that
is as stable and precise as possible, we made a lot of effort
into handling various errors.

2. Literature View

2.1. Epipolar Geometry

Let the point where any 3D point X is projected from
views 1 and 2 be x1 and x2, respectively. We cannot know
the depth only from x1 of view 1, but what we only know
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Figure 2. 3D Reconstruction

is that X is placed on the line connecting the camera cen-
ter and x1. Therefore, projecting a line into view 2 image
where X can be placed is represented as one line. This is
called epipolar line corresponds to l2 in Fig.1. The point x2

at which X is actually projected in view 2 is also placed on
the epipolar line l2.
Conversely, in view 2, It is able to draw an epipolar line
in view 1. The points where the line connecting the cam-
era centers of view 1 and view 2 intersect with each image
are called epipoles, which is always placed on the epipo-
lar line. The epipoles, epipolar lines, camera centers, and
the actual 3D point X are all placed in one plane, which is
called epipolar plane.

2.2. 3D Reconstruction

In this project, it should be possible to restore 3D
coordinates using images taken from two different views.
Therefore, we defined 3D reconstruction as ”a method of
restoring 3D coordinate of a specific point using images
taken from two views that know the location relationship”,
and Epipolar geometry was used to induce the following.

If a point (u, v) on the 2d image is expressed as homo-
geneous coordinate, it becomes (u, v, 1). It means that all
(cu, cv, c) coordinates in the space are projected as (u, v)
on the image. For any point P in the space, as shown in Fig.
2, let’s say the coordinate from the view 1 is P1(x1, y1, z1)
and the coordinate of the point projected on the image plane
is p1(u1, v1). This is equally represented by P2(x2, y2, z2)
and p2(u2, v2) in the view 2 coordinate system. If the con-
version between view 1 and view 2 is defined as a rotation
matrix R and a translation vector t, the following equation
holds between P1 and P2.

RPT
1 + t = PT

2 (1)

If the corresponding point pair is known from the two
images, three-dimensional coordinates can be obtained us-
ing triangulation and fitting. We want to get 3D coordinate
P1(x1, y1, z1) as seen in the first view.

When we rearrange 1 into p1(u1, v1) and p2(u2, v2), the
following two equations can be obtained. Two expressions
can be obtained from the above expression.

[R2|t3]u1 − [R1|t1]
(
P1

1

)
= 0 (2)

[R2|t3]u2 − [R2|t2]
(
P1

1

)
= 0 (3)

Also, P1(x1, y1, z1) is projected as p1(x1/z1, y1/z1) on
view 1 image, so the following expression is established.

[1, 0,−u1, 0]

(
P1

1

)
= 0 (4)

[0, 1,−v1, 0]

(
P1

1

)
= 0 (5)

Thus, A
(
P1

1

)
= 0 is established for the 4*4 matrix A,

and the problem of obtaining P1 is replaced by the problem
of solving the objective function below.

min ||Ax|| (6)

If A is eigen-decomposed as A = V DV T and y = V Tx,
it is rearranged as follows.

||Ax|| = xTATAx = xTV D2V Tx = yTD2y (7)

Consequently,
(
P1

1

)
is the eigenvector corresponding to

the smallest eigenvalue of ATA

2.3. Feature Descriptor

2.3.1 SIFT [2]

SIFT is a 128-dimensional descriptor that approximates
Laplacian of Gaussian as a Difference of Gaussian to in-
crease computation speed, and uses an image pyramid that
converts image sizes in various ways to detect feature points
with different scales. [1] The oval blob is detected through
affine transformation.

2.3.2 SURF [3]

SURF is a 64-dimensional descriptor that uses integral im-
age to improve computation speed very quickly and main-
tain competitive performance. Since the amount of com-
putation is same regardless of the filter size using integral
image, filter pyramid is used by converting the size of the
filter without image conversion. It uses the round blob with-
out affine transformation.



2.3.3 ORB(FAST+BRIEF) [4]

ORB is a detector created by combining FAST detector and
BRIEF detector. In the case of FAST detector, unlike SIFT
or SURF, one key point has only one feature. It obtains cor-
ner by Harris corner detection, distinguishing the difference
between the center pixel and the surrounding pixel. How-
ever it cannot consider any direction of the corner. BRIEF
descriptor is a method of increasing computational speed by
reducing memory through binarization.

2.4. PTAM [5]

PTAM is one of the visual SLAM algorithms using key
frames, and is a technology that optimizes conversion be-
tween key frames to maintain the accuracy of maps con-
taining features while performing localization and mapping.
The characteristic of PTAM is that tracking the location
of the camera and the mapping process of extracting and
storing feature points are divided into separate and parallel
threads. It tracks the location of the camera in a short period
of time, and can be implemented in real-time by processing
only key frames and containing high-accuracy features even
if it takes a long time.

2.5. Lie Theory: SE(3) Group [6]

SE(3) Group of Lie theory refers to rotation and trans-
lation in 3D space. Since 3D motion can be represented as
4 × 4 matrix and the degree of freedom of the motion is 6,
there must be a mapping between 6 dimensional vector and
the 4× 4 matrix. Let express the 6-dimensional vector as µ
and the extrinsic matrix as P .

µ = [t1, t2, t3, w1, w2, w3]
T = (t,w) (8)

Then A can be represented as following:

P = exp(µ∧) =

R Rc

0T 1

 (9)

The exponential mapping of 9 is defined by Lie theory
with complex mathematical expressions.

2.6. Gauss-Newton Method [7]

The Gauss-Newton method is an iterative optimization
algorithm used to solve nonlinear least squares problems.
These problems involve finding the best-fitting parameters
for a nonlinear model that minimizes the sum of squared
differences between the observed data and the model pre-
dictions.
Given m functions of n variables β = (β1, ..., βn), the
Gauss-Newton algorithm iteratively finds the β that mini-
mize the following sum of squares

S(β) =

m∑
i=1

ri(β)
2 (10)

It tried to find the solutions by the iterations

β(s+1) = β(s) −
(
Jr

TJr

)−1

Jr
Tr

(
β(s)

)
(11)

3. Method
3.1. Map Initialization

To make a map that contains the feature points, we need
to define the coordinate. So choose the first frame to world
reference frame. We can extract the feature by choosing
any two frames, but to reconstruct the 3D coordinates of the
featurs, the extrinsic pose between the two frames have to be
known. So assume the start of the video have to be moved
right side translation without any rotation. If we assume the
initial pose between first frame and after 4 seconds frame
has only translation of 10cm, the initial extrinsic pose will
be as follows:

P1 =
[
R|t

]
=

1 0 0 10
0 1 0 0
0 0 1 0

 (12)

Figure 3. feature matching between 10cm translated frames

Then applying ORB descriptor for each frame, we can
get a feature points of it. By using K-nearest neigh-
bor method, matched feature between two frames can
be obtained. It means we know the 2D coordinates
p1(u1, v1), p2(u2, v2). The pose P1 is also known, so
we can obtain the 3D coordinate of the feature point
P1(x1, y1, z1) by using the result of subsection 2.2. Then
the initial map that contains 3D coordinates of features are
prepared.

3.2. Plane Detection

To plot the cube in the video, the desk have to be de-
fined first. So we assumed that the desk has the most fea-
ture points that composes the plane. In previous step, we
obtained map that contains 3D feature points. So we can
detect the dominant plane by using Random Sample Con-
sensus(RANSAC). First, randomly choose 3 points in map.
Then generate the plane containing it, and count the num-
ber of inlier points that the distance from the plane within
threshold. Recursively perform it and find the best plane
that represents the desk. We conducted 100 iterations in
RANSAC.



3.3. Create 3D Cube

Now we have to select the 2D points where we want to
place the cube on the desk. If we select 2D points in image,
we have to make 3D projection coordinate that crossed with
the plane we previously detected. Let’s assume the situation
as shown in Figure 4.

Figure 4. 3D projection

First, we have to transform the 2D point to 3D point in
image plane. The relation between two points can be ex-
pressed with intrinsic parameters from calibration as below:

X2d = (u, v)T (13)

X3d,image =

(
u− cx
fx

,
v − cy
fy

, 1

)T

(14)

The ray that projected X3d,image from center of the cam-
era have to cross the 3D point on the desk plane X3d. So
we can obtain the X3d by solving two equations as follows:

X3d = kX3d,image (15)

nX3d + d = 0 (16)

Then, we can generate the cubes coordinates center of
chosen points. It is defined in world coordinate, so it is
constant value and projected to ith frame by using pose.

3.4. Optical Flow

The main task is to find a pose of ith pose. To estimate
a pose, we have to find a matched 2D points first. We used
optical flow by Lucas-Kanade [8] to find a matched points
pairs. We use the brightness constancy assumption.

I(x∆x, y +∆y, t) = I(x, y, t− 1) (17)

If we use Linearizing by Taylor expansion, we can get a
equation about motion vector v = (∆x,∆y)T

I(x+∆x, y+∆y, t) ≈ I(x, y, t)+∇xI∆x+∇yI∆y (18)

(
∇xI(p) ∇yI(p)

)(∆x
∆y

)
= −∇tI(p) (19)

The unknown variable is motion vector which has 2 di-
mension. One pair of matched points gives one equation,
so it makes aperture problem. We need more assumption
that the points in local window has same motion vector. We
used 50x50 window size.

∇xI(p1) ∇yI(p1)
...

...
∇xI(pn) ∇yI(pn)

(
∆x
∆y

)
=

−∇tI(p1)
...

−∇tI(pn)

 (20)

Let’s express the equation 20 as Av = b. Then the least
square solution of the motion vector can be derived.

v = (ATA)−1AT b (21)

We applied it for one frame unit after the map initializa-
tion. Image pyramid is used in 2-level for match various
size of feature.

3.5. Camera Tracking

In this stage, we assume that we already have the 3D
coordinates of 0th frame and ith frame, and 2D coor-
diantes of ith and (i + 1)th frame, which are expressed by
X0

3D, Xi
3D, Xi

2D, and Xi+1
2D . We want to know the motion

vector µi+1 from the given coordinates. First, we first set
the objective function as the error between the observed 2D
coordinate of (i + 1)th frame(Xi+1

2D ) and estimated coordi-
nates of the frame from the motion vector.

µi+1 = argmin e2
µ

(22)

e2 =

m∑
i=1

ej
2 (23)

ej
2 =

∥∥∥∥∥∥∥∥
ui+1

j

vi+1
j

− proj(exp

µi+1


xi
j

yij
zij
1



∥∥∥∥∥∥∥∥
2

(24)

To apply Gauss-Newton method on 22, we should com-
pute Jacobian matrix of ej with respect to the motion vec-
tor µ. Since the Jacobian matrices are computed from the
each matched point, there are total n Jacobian matrices. The
computation is performed as following:

J j =
[
∂ej
∂µ1

...
∂ej
∂µ6

]
∈ R2×6 (25)

=

fx 0

0 fy

[
∂

[
xi+1

zi+1
yi+1

zi+1

]T

∂µ1
...

∂

[
xi+1

zi+1
yi+1

zi+1

]T

∂µ6

]
(26)

J =

J1

...
J6

 ∈ R2n×6 (27)



In 26, we exploited SE(3) differentiation method from
Lie theory. If the Jacobian matrix is successfully obtained,
we apply Gauss-Newton method 10 times to get the optimal
solution of 22. The number of iterations 10 is empirically
obtained. After the iterations, we can obtain the µi+1 which
means the pose between ith frame and i+1th frame. So the
pose of the i+1th frame from world frame is easily derived
by multiply µi+1 to the previous pose Pi.

Pi+1 = exp(µi+1)Pi (28)

3.6. 2D Cube Projection

This step is to project the cubes in 3D world coordinate
X3d,w to 2D image coordinate X2d. We obtained the pose
of the ith frame Pi, so the projected 2D points can be easily
derived as follows:

X3d,i = PiX3d,w = (xi, yi, zi)
T (29)

X2d = K

xi/zi
yi/zi
1

 (30)

3.7. Optical Flow Outlier Rejection

But the optical flow is not that accurate if there are flat
or edge features. So we have to reject the outliers to handle
the accumulative error. We suggested to estimate the po-
sition of feature in i + 1th frame X̂i+1 by using the pose
between i − 1th frame and ith frame µi. Then compute
the error and its mean, standard deviation between matched
point determined by optical flow Xi+1. If the error is over
than µ + kσ, we considered to outlier and reject it. This
steps is conducted under the assumption that the pose be-
tween i− 1th frame and ith frame µi and pose between ith
frame and i+ 1th frame µi+1 will approximately same.

3.8. Map Reconstruction

The previous steps ensures to maintain the inliers fea-
tures. But there are only rejection of outlier, so tracking
features in map will be continuously reduced. To preserve
the number of features, we need to reconstruct the map and
add new features. In map initialize step in subsection 3.1,
we had to assume the pose between the initial two frames.
But we know the pose between ith frame and i+ 1th frame
now, so we can construct the 3D coordinate of new matched
features without any additional condition. However enough
number of the features doesn’t ensure the stability of track-
ing. If there are too much features, pose can bounce due
to many outlier rejection in short period. So it is important
to reconstruct the map in proper time. We conducted the
map reconstruction when the number of the current feature
points in map is less than half of the number of total feature
points in initial map. Due to this step, it can preserve the
pose tracking even if the camera view goes out of the desk.

4. Results
To test this algorithm, it can easily performed to put any

videos that moves right translation for first 4 seconds. There
has to be some features in desk to detect. The result of
the reconstructed 3D feature points in world frame and the
dominant plane chosen by RANSAC is shown in Figure 5.
There will be matched features not on the desk between ini-

Figure 5. plane detection via RANSAC

tial two frames, and in bad case, outliers can also generate
the dominant plane if there are less features in desk or the
features on the other plane is extracted too much. So to
make sure the desk plane is well detected, we have to check
the features on the desk in 2D image is well chosen to inlier
and project the plane to 2D image. We can see that there

Figure 6. plane projection to image

are various features not only in the desk, and a desk is well
detected. Now we can choose the points to place the cubes
and the optical flow is conducted. If we don’t use the out-
lier rejection in optical flow, it fails to track the pose due to
accumulative error. In the figure 7, the motion vector of the
features are not accuracy, so the tracking feature goes out of
the corner to flat or edge. If we apply the outlier rejection,
figure 8 shows that the optical flow has strong robustness
even in fast motions.

If there are less features in current map, the map recon-
struction conducted. It occurs when the motion is too fast
or the camera view goes out of the initial view. In figure 9
and 10, the view goes outside of the desk, so the features



Figure 7. no outlier rejection Figure 8. with outlier rejection

Figure 9. before map recon-
struction

Figure 10. after map reconstruc-
tion

in map are disappearing. But when the map reconstruction
conducted, we can see that the new matched feature points
are added and conserve the tracking. It makes the track-
ing robust to the time, fast motion and view of the camera.
Finally, we can get the video contains cubes. Cubes are de-

Figure 11. video1 view1 Figure 12. video1 view2

Figure 13. video2 view1 Figure 14. video2 view2

fined in 3D coordinates in world frame, so if the tracking is
successfully proceeded, cubes can be placed in any view of
camera shown in figure 11 and 12. Figure 14 is the frame
that came back after moving the camera at the view outside
the desk from figure 13. It means the map reconstruction is
well performed and tracking conserved. The time for fea-
ture matching and pose tracking between two frames takes
up to 0.0153 seconds and the average time was 0.0112 sec-
onds. You can see the example videos or test your own
videos in github link in abstract.

5. Conclusion
To sum up, we have successfully developed a simple

augmented reality (AR) technology using traditional com-
puter vision methods, without relying on deep learning ap-
proaches. Through the implementation of camera calibra-
tion, 3D map initialization, dominant plane selection, 2D
point tracking, camera tracking, cube projection, and inno-
vative error handling methods, we have achieved a signif-
icantly stable and precise AR model. Our system can ac-
curately display cubes in videos captured by fast-moving
cameras or cameras completely out of the initial position
and direction. Notably, our approach exhibits impressive
efficiency, as it takes only 0.015 seconds per frame to han-
dle high-resolution (1920x1080) videos, enabling real-time
operation until 67 fps camera. Overall, our project shows
the potential of traditional computer vision techniques in
the field of augmented reality.
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