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Abstract: Navigating around dynamic obstacles such as human crowds poses a
significant challenge for mobile robots. This project introduces a pipeline to train
a hierarchical, LiDAR based perception-navigation policy end-to-end with rein-
forcement learning. The planner utilizes an encoding of a LiDAR point cloud
to predict velocity commands that are passed to a low-level policy. Utilizing the
student-teacher approach, we first train a teacher policy using privileged observa-
tions, which include the velocities of the obstacles and a sparse 2D point cloud. A
LiDAR encoder, trained using self-supervision, embeds the raw point-cloud data
for the student policy. To enable the planner to reason about the motion of the ob-
stacles and prevent it from getting stuck in local minima, we include a gated recur-
rent unit in our policy network. We evaluate the teacher policy in both static and
dynamic environments, demonstrating that observing the velocities of the obsta-
cles enhances performance in dynamic scenarios. Additionally, our results reveal
that the current implementation of the recurrent unit in combination with recur-
rent PPO does not improve the performance in the static case, necessitating further
research.
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1 Introduction

Mobile robots are increasingly common, but mostly operate in controlled environments like ware-
houses or factories. Miki et al. [1] enabled legged robots to navigate unstructured terrain like forests
or mountains. However, to integrate robots into daily life, advanced navigation skills are also a cru-
cial component. Recent advancements allow autonomous agents to navigate complex environments,
including avoiding undesirable areas like roads by utilizing visual semantic information [2]. Social-
aware trajectory prediction methods, like [3], rely heavily on precise human information, often from
advanced detection models applied to image data. LiDAR data, while occasionally used alongside
image data, is seldom employed alone [4]. Effective end-to-end reinforcement learning approaches,
as shown by Liu et al. [5], are promising, but directly implementing detection and tracking networks
onto robots for real-world applications remains computationally challenging.

We believe that LiDAR data is sufficient to navigate around humans. The positional information is
inherent to LiDAR and the temporal information can be inferred from multiple scans. By avoiding
image data, we have the potential to have a considerably smaller end-to-end neural network that can
be run directly on a computer on the robot. Moreover, it does not rely on lighting conditions. To
address this problem, we first train a LiDAR encoder using supervised learning. In a second step we
employ reinforcement learning to train a navigation model that predicts velocity commands given
the LiDAR encoding and a target position. The combination of these models results in an end-to-end
navigation model which does not rely on camera data.

Our contributions can be summarized as:



• We propose a pipeline that trains a navigation model via teacher-student policies using only
LiDAR as the exteroceptive sensor.

• We trained the teacher policy in static and dynamic environments.

• We evaluated the effect of adding recurrence to the navigation pipeline.

This paper is organized as follows: We review related work in section 2, outline our methodology in
section 3, discuss experiments in section 4, and conclude in section 5.

2 Related Work

Local path planning is a crucial task in robotics, traditionally relying on geometric approaches
that utilize point clouds or meshes to determine traversability based on occupancy metrics [6, 7].
Sampling-based and optimization-based methods are commonly employed, however, these strate-
gies can restrict the model’s effectiveness, often resulting in failures when navigating paths that
encounter geometric obstacles.

Recent advancements in mobile robot navigation have shown great success with learning based
approaches. Some methods are based on supervised learning to replicate expert paths or ground
truth trajectories [8, 9, 10]. However, their generalizability to diverse environments is hindered by
the limited diversity and richness of the data, which can also compromise the optimality of the
results.

Recently, non-supervised learning approaches have been developed, categorized into imperative
learning and reinforcement learning. The imperative learning framework, as used in Yang et al.
[11], utilizes depth images combined with a cost map. Meanwhile, Roth et al. [2] integrates depth
images with semantic information for navigation in static environments. While these methods are
training-efficient, they face challenges such as the need to pre-define cost maps and bridging the gap
between simulated and real-world data.

Reinforcement learning-based planning has the advantage of incorporating the robots physical con-
straints by learning to directly map perception inputs to high-or low-level velocity commands
through interacting with a simulated world at the cost of requiring a lot of data [12]. State of the art
simulation frameworks, such as [13], which fully utilize the parallelization capabilities of modern
GPUs alleviate this problem by simulating thousands of robots in parallel.

He et al. [14] jointly trains an agile locomotion policy with a recovery policy to prevent failures, col-
laboratively achieving high-speed and collision-free navigation in static and dynamic environments.
For exteroceptive perception, cameras were used to predicted 11-d ray distances in a 90◦ field of
view, providing a low dimensional input for policy training.

LiDAR-based path planning methods, like [15], utilize LiDAR sensors to build maps and plan
collision-free paths, bypassing issues of image-based methods like sensitivity to lighting condi-
tions. Nonetheless, challenges persist in processing LiDAR point cloud data effectively, especially
in crowded environments with dynamic obstacles.

Liu et al. [16] utilized reinforcement learning to train a crowd-navigation policy with a stereo camera
and LiDAR observations in combination with an attention based human-robot model introduced by
the works of Chen et al. [3]. Albeit showing impressive results, they did not use a memory unit
which can lead to the planner getting stuck in local minima [17].

Most of these methods navigate each frame independently, neglecting the temporal movement of
dynamic objects. Liu et al. [5] employed decentralized structural RNNs with model-free reinforce-
ment learning, a method that’s effective but can be unstable during training and demands significant
computational resources, especially in dynamic environments. Additionally, scalability issues and
computational complexity may hinder onboard computation with real-time performance.
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3 Method

3.1 Problem Definition
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Figure 1: Privileged observations. The first plot
shows the 2D point cloud, color coded by the or-
dering. The second one shows the unraveled dis-
tances of that point cloud. The third plot shows
the non-zero velocities of the meshes correspond-
ing to each point.

We define the environment in which the robot
operates as Q ⊂ R3 and the robots pose at
time step t as pR

t ∈ Q, referring to its 2D
position and yaw orientation. Let the subset
Tt ⊂ Q represent the workspace that the robot
can traverse at time step t. The environment
is static if T0 = Tt∀t ∈ N. Given a LiDAR
point cloud Pt ∈ Rn×3 (a set of 3D points) at
time step t and a 2D goal position pG

t ∈ R2 in
robot frame, a velocity command vdes

t ∈ R3

should be calculated that navigates the robot
to the goal while avoiding obstacles, such that
pR
t+1 ∈ Tt+1. The navigation is successful

if the goal is reached in finite time such that
||pR

T,xy − pG||2 < ϵgoal, where ϵgoal ∈ R is
a distance threshold, T ∈ N is a finite time
step and the subscript xy refers to the positional
component of the robot pose.

In simulation, we have access to privileged in-
formation which we use for the encoder train-
ing and the teacher policy. Let D ∈ Rk×2

be an ordered, sparse 2D point cloud, meaning
that all points lie on a plane that is parallel to
the ground and k ≪ n. The point cloud is or-
dered according to the yaw rotation of the robot,
meaning that the point in front of the robot is al-
ways in the same entry of D. Let Ddist ∈ Rk

be the distances of each point of D to the robots
origin and Dvel ∈ Rk×2 be the velocities of the
obstacles corresponding to the points in D ro-
tated to the robots frame. Note that in a static
environment all entries of Dvel are 0. In fig. 1
the privileged data is visualized.

3.2 System Overview

The proposed training pipeline is illustrated in fig. 2. The navigation policy essentially consists of
a perception and planning network. The perception network in the teacher policy takes as input the
privileged information [Ddist,Dvel] ∈ Rk×3 and transforms it as a three-channel 1D image with
a convolutional neural network (CNN) into a spatio-temporal perception embedding. The previous
position of the robot in the robot frame is first lifted into a higher dimension and then concatenated
to the perception embedding. By providing this information we aim to prevent the policy from
learning a registration of the spatial data. The concatenated embedding vector is passed through
a multi layer perceptron (MLP) to get the privileged embedding Opriv, before it enters a gated
recurrent unit (GRU). Since the teacher has direct access to the velocities of the obstacles, the GRU
is only required to prevent getting stuck in local minima (i.e., dead ends). The output of the GRU is
concatenated with an embedding of the goal position pG and a proprioceptive measurement z ∈ R8

before it enters the planning network, which predicts a velocity command. The full point cloud
contains n = 28800 points while the sparse, privileged point cloud contains k = 360 points. This
means that a different perception head is required for the student policy. To process the full point

3



CNNPillar
Feature Net Backbone

3D LiDAR
Pointcloud

2D LiDAR
Distances

Encoder Training

   
 

2D Lidar Distances

Goal Position
Proprioception

2D Mesh Velocities

Previous Position

Perception
CNN

Memory Unit

Linear Layer

Dimensionality Increase

Perception 
MLP

Planning Network

Velocity
 Command

Teacher Training

    

 
 

  

  

Student Training

Initialize with teacher weights  

Fixed weights   

Goal Position
Proprioception

Memory Unit

Dimensionality 
Increase

Perception 
MLP

Planning Network

Velocity
Command

Pretrained Lidar
Encoder

3D Lidar 
Pointcloud

  

  

  

  

Figure 2: Overview of the proposed learning pipeline. The Teacher takes as input the privileged
2D point cloud, the previous position of the base, proprioceptive information, and a desired goal
position and predicts a 2D velocity command. The encoder is based on the PointPillar architecture
and is trained with the raw point cloud as features and the 2D point cloud distances as targets. The
student policy takes as input the raw LiDAR point cloud, the goal position, and the proprioception
and, like the teacher, predicts a velocity command.
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cloud we employ the PointPillar [18] architecture which we first train supervised with a recorded
dataset D = {Pi,Di|i = 1, 2, . . . , nD} of nD pairs of full point clouds with sparse 2D point
clouds to learn an efficient LiDAR encoding. The trained PointPillar network, now with its weights
fixed, servers as the perception head of the student policy which takes the full point cloud P as
input and returns a spatial embedding Oldr which is then fed into an MLP before it enters a GRU.
This recurrent unit should learn to extract the dynamic behavior of the moving obstacles while also
alleviating the local minima problem. The planning network can be initialized with the weights of
the teacher policy. In the following sections we will detail our pipeline.

3.3 LiDAR Encoder

As mentioned, the LiDAR encoder is implemented with the PointPillar architecture, which com-
prises a pillar feature network and a 2D CNN backbone. The pillar feature network converts 3D
point clouds into stacked pillar tensors, creating a pseudo image. The primary advantage of Point-
Pillar is its efficiency: it employs 2D convolution on the pseudo image rather than 3D convolution,
which is more time-and memory-efficient for processing. Given the need for a streamlined encoder
in an end-to-end model, this approach ensures the computation through the encoder weights is both
simple and efficient. The 2D CNN backbone processes tensors at three different spatial resolutions
to accurately detect obstacles of various sizes. We refined the model by replacing batch normal-
ization with layer normalization, allowing training to be independent of batch size. The decoder
was designed to downscale the latent vector to match the scale of privileged information through
convolution, without using a pooling layer.

The trained LiDAR encoder serves as the perception head of the student policy, extracting the spatial
embedding Oldr from raw point clouds, as illustrated in fig. 2. To train the encoder, we first sim-
ulated the LiDAR sensor in simulation to collect the training dataset D in a dynamic environment.
Utilizing privileged information from the simulation, we amassed a total of nD = 8000 data points,
totaling approximately 10GB. By removing the output layer, the encoder effectively transforms a
LiDAR point cloud into the spatial embedding Oldr.

3.4 Planner

The planner takes as inputs the target position and exteroceptive and proprioceptive sensor-data, and
returns a twist command τ ∈ R3 which is then passed to a robot-specific pretrained low-level policy.
To constrain the velocity command to a valid range without clipping the output which could lead to
vanishing gradients, we employ the beta distribution which has a support range S = [0, 1]. The beta
distribution is parameterized by two values, α and β and its probability density function is defined
as follows:

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (1)

where Γ is the Gamma function. Instead of directly predicting the individual entries of the twist
command, we instead predict the α and β values of a beta distribution, sample from it and linearly
transform it to a robot-specific target range to get the actual prediction. This can be simply achieved
by doubling the size of the output layer.

3.5 Teacher Policy Training

3.5.1 Static Obstacles

We first train the navigation policy in a static environment with a curriculum terrain. The terrain
is generated with randomized terrain-cells of size 8 × 8 m. In fig. 3 different terrain-cell types,
such as passages with dead ends and randomly placed cuboid obstacles are shown. We increase the
difficulty simply by increasing the number of random obstacles on a cell from 0 to 16. When starting
the train run, the robot spawns on the simplest terrain-cell. A goal position is sampled random in a
neighboring cell. The episode is terminated when the robot reaches the goal, when it collides with
an obstacle or when a time limit is reached. To determine when a robot moves to a more difficult or a
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simpler terrain, we count how many episodes terminated due to reaching the target nsuccess and due
to colliding with the environment nfail. If nsuccess − nfail ≥ 4 the robot moves to a more difficult
terrain and if nfail − nsuccess ≥ 8 the robot moves to a simpler terrain. After each terrain change,
we reset the termination counters. We also increase the goal distance dgoal ∈ N linearly with respect
to the training iteration. The goal is sampled in a square, centered in the spawn position, with a side
length l = 16dgoal m, such that the goal is in the center of a terrain-cell which is guaranteed to be
not blocked. We increase dgoal up to 5, resulting in a maximum possible goal distance of 56 m.

Figure 3: Different terrain types (left), static curriculum terrain with increasing difficulty from left
to right (middle) and terrain with dynamic obstacles in yellow (right).

We designed the reward such that the robot should reach the goal as fast as possible, while staying far
a way from obstacles. To discourage the robot from walking towards obstacles, we added a penalty
if an obstacle is in front of the robot. The detailed rewards and penalties can be seen in table 1.

Reward Formula Weight

Goal reached ||pR
t,xy − pG||2 < ϵgoal 1000

Goal progress clip(
pR
t,xy−pG

||pR
t,xy−pG||2

· ṗR
xy, 0, 1) 1

Lateral movement min((ṗR
y )

2, 1) -0.05
Backward movement min(min(ṗR

x , 0)
2, 1) -0.05

Termination if episode terminates without timeout -500
Close to obstacle 1− tanh

dmin,360−0.75

0.2
, dmin,360 = distance to closest ob-

stacle
-2

Obstacle in front wide 1−tanh
dmin,60−1

0.5
, dmin,60 = distance to closest obstacle

in a 60◦ field of view in front of the robot
-1

Obstacle in front narrow 1−tanh
dmin,30−2

1.5
, dmin,30 = distance to closest obstacle

in a 30◦ field of view in front of the robot
-1

No movement exp (−10 ∗
∑20

k=0 ||p
R
t−k,xy − pR

t−k−1,xy||2) -5
Action rate ||τ t − τ t−1||2 -0.1
Waste time 1 -0.001

Table 1: Rewards and penalties used during teacher training with static obstacles.
To estimate the performance of the navigation policy we use the success rate η which we calculate
as the ratio of terminations due to reaching the targeted to total terminations over the last 10 termi-
nations of all robots. A success rate of η = 1 would mean that all robots have terminated the last 10
episodes successfully.

3.5.2 Dynamic Obstacles

Upon achieving a satisfactory success rate in combination with a sufficiently high terrain difficulty,
we transition to an environment with dynamic obstacles. To adapt to the new environment, we in-
clude the obstacle velocities to the observations, which are not required in the case of static obstacles,
and replace the perception head accordingly.

To learn to navigate around dynamic obstacles, we designed a new environment and added a sim-
plified crowd simulation. In fig. 3 dynamic obstacles are shown in yellow. For the static obstacle,
we randomly place cuboid obstacles in the scene with an uniform density, i.e., a terrain without
curriculum. To simulate a crowd, we created dynamic obstacles represented as cuboids of size
0.75 × 0.75 × 2 m. A simple pd-controller steers these obstacles to a randomly sampled target
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position with a maximum velocity vobs,max ∈ R+. We sample the obstacle goal position uniformly
on a disk with radius 10 m around the current obstacle position in uniformly sampled time intervals
between 5 and 20 s. To ensure that the moving obstacles do not leave the scene, we clip any goal
position that lies outside the environment to its border. To increase the difficulty for the robots,
we implement a curriculum that linearly increases vobs,max from 0 to 0.5 ms−1. To encourage the
rl-agent to not collide with an obstacle, thus terminating the episode, we replace the “waste time”
penalty with a “stay alive” reward with the same formula, but with a positive weight of 0.1.

3.6 Implementation Details

The teacher policy is trained with an actor-critic structure. In fig. 2 the actor structure is shown. The
critic architecture is the same, except for the output dimension which is 1. The teacher perception
head is a three layer CNN, each with 16 channels, a kernel size of 5 and a stride of 2 for the
first and last layer and 1 for the middle layer. We used circular padding for all layers. This CNN
converts the 360 × 1 dimensional input to a 90 × 16 dimensional output. This is flattened to 1440
dimension and passed through a two layer MLP with 256 and 128 layers. To this, we concatenate
the embedded previous position of dimension 16 resulting in a 144 dimensional vector which is
then passed through an additional layer of dimension 128, before it enters the GRU with a hidden
dimension of 512. The concatenation of the goal position and the proprioception have dimension 10
and are passed through a single nonlinear layer with 128 dimensions. This output is concatenated
with the output of the GRU and passed through the planning network which is designed as an MLP
with 256 dimensions for the first two layers and 128 for the third layer before it enters the output
layer which has dimension 6 for the actor and 1 for the critic. We used the exponential linear unit
(ELU) as our activation function. This architecture is optimized using Proximal Policy Optimization
(PPO) [19] within the ORBIT [13] framework based on NVIDIA ISAAC SIM.

4 Experiments

4.1 Teacher Policy

The teacher policy was trained for 10000 steps in the static environment with 512 robots in parallel
on a single NVIDIA RTX 2080 GPU. To show the effect of the recurrent unit, we evaluated the
teacher policy on three different static and one dynamic environment. In fig. 4 the three terrains are
visualized. During testing, we deterministically set the goal position but spawned the robot with
random yaw orientations. A run is considered successful if the goal is reached within 60 s and
failed if the robot collides or the time is up. We let 128 robots terminate 50 times and calculated the
success rate as the ratio of terminations due to reaching the goal to the total number of terminations.
In fig. 5 the success rate for the three different terrains and policies with and without recurrence are
visualized. When removing the GRU, we replaced it with a linear layer of the same dimension as the
hidden state. Surprisingly the presence of a recurrent unit did not increase, but slightly decrease the
success rate, i.e., it did not help to prevent the robots getting stuck in local minima. We hypothesize
that this is caused by the way the recurrence works. The GRU treats each sequential data point as
equally spaced, i.e., there is no notion of spacial relation. We tried to mitigate this by adding the
previous position to the input of the recurrence but this does not seem to help. Additionally, there
might be a fundamental error in the implementation of recurrent PPO that we used.

Since the addition of the recurrence does not improve the performance in the static setting, we
ignored it in the dynamic setting, because the teacher does not need to infer the motion of the
obstacles as this is given to the observations. The policy trained in the static environment was trained
for another 5000 steps in the dynamic environment, also with 512 robots and the same amount of
dynamic obstacles. The size of the training terrain is 96 × 96 m, resulting in an average density of
one obstacle per 18 m2. We evaluated this policy the same way we did for the static case and with
the same obstacle density that we used during training. We measured a success rate of 0.745. To
show the effect of adding the velocities to the observations, we also trained a policy with the same
observations as in the static case in the dynamic environment, resulting in a success rate of 0.631.
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Figure 4: Static test terrains with increasing obstacle density from left to right.

5 Conclusion, Limitations and Future Work

Figure 5: Success rate in a static environment with
and without recurrence

In this work we propose a teacher-student
pipeline to train a LiDAR based navigation pol-
icy end-to-end in simulation. We show that
sparse 2D distances are sufficient exteroceptive
observations to navigate to a goal position in a
static environment. To train a navigation pol-
icy in a dynamic environment we simulated a
crowd with cuboids that move with a limited
velocity to a random sampled position. In this
environment we, train a policy with privileged
information, namely the mesh velocities, and
we show that the performance improves. We
argue that without the privileged velocity ob-
servations, recurrence is required to extract the
dynamics of the scene from a series of static
spatial embeddings. We added a gated recur-
rent unit to our network and trained it with a recurrent version of PPO, however, we noticed that
adding the recurrence results in a slightly worse performance than without it. To this end, we are not
sure what caused this performance decrease. Our hypothesis is, that the current implementations of
recurrent units are missing a spatial metric between the data points. Additionally, the recurrent PPO
implementation might not be optimal.

The LiDAR encoder was trained using a dataset obtained from our simulation setup, which includes
dynamic obstacles. The encoder model contained 5,500,000 parameters, and training was conducted
on 8,000 non-continuous frames. We observed that the training loss converged, but the validation
loss diverged. We believe the encoder’s high complexity and the insufficient dataset size led to
overfitting. Due to these limitations, we were unable to train the student policy.

For future work, a spacial recurrent unit should be developed in combination with a proper recurrent
PPO implementation. Additionally, the LiDAR encoder should be trained online, i.e., while simu-
lating a trained teacher policy to collect data on the fly. This practically leads to an infinite amount
of training data which should prevent the encoder from overfitting. Due to the sim-to-real gap, the
LiDAR encoder should also be fine tuned on real data. Furthermore, Our basic crowd simulation
setup does not reflect the behavior of real crowds, necessitating the development of a more realis-
tic implementation, consisting of better humanoid obstacles and crowd dynamics. Finally, the full
pipeline should get evaluated on a real robot with a real crowd.
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