
Vision for Robotics Lab
Prof. Margarita Chli

Semester Thesis

Supervised by: Author:
David Hug Hojune Kim
Cornelius von Einem

Gaussian Belief Propagation

for Continuous Time

Simultaneous Localization

and Mapping

Spring Term 2024

Declaration of Originality

I hereby declare that the written work I have submitted entitled

Gaussian Belief Propagation for Continuous Time Simultaneous Local-
ization and Mapping

is original work which I alone have authored and which is written in my own words.1

Author(s)

Hojune Kim

Student supervisor(s)

David Hug
Cornelius Einem

Supervising lecturer

Margarita Chli

With the signature I declare that I have been informed regarding normal academic
citation rules and that I have read and understood the information on ’Citation eti-
quette’ (https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-
abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf). The
citation conventions usual to the discipline in question here have been respected.

The above written work may be tested electronically for plagiarism.

Place and date Signature

1
Co-authored work: The signatures of all authors are required. Each signature attests to the

originality of the entire piece of written work in its final form.

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf
https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf
hojjunekim
Zürich, 14.08.24

Contents

Abstract iii

Symbols 1

1 Introduction 2

2 Related Work 3

3 Methodology 4
3.1 Continuous Time Parameterization 4
3.2 Continuous Time Optimization . 4
3.3 Gaussian Belief Propagation . 5

3.3.1 Node Updates . 6
3.3.2 Node-to-factor Messages . 6
3.3.3 Factor Updates . 7
3.3.4 Factor-to-Node Messages . 7

4 Experiment 8
4.1 Simulation . 8
4.2 Dataset . 9
4.3 Discrete Time . 9
4.4 Continuous Time . 10

5 Conclusion 13

Bibliography 15

ii

Abstract

Conventional Simultaneous Localization and Mapping (SLAM) methods, typically
based on discrete-time formulations, have demonstrated significant utility in various
robotics applications. These methods, however, face challenges such as quantiza-
tion errors and ine�ciencies in handling asynchronous data from multiple sensors.
Continuous-time SLAM approaches, utilizing splines to represent motion, o↵er a
promising alternative by more naturally integrating sensor data captured at irregu-
lar intervals. Despite their potential, many continuous-time SLAM methods rely on
centralized Non-Linear Least Squares (NLLS) solvers, which can be computationally
expensive and ine�cient for asynchronous data processing.
This project addresses challenges in SLAM by integrating the decentralized solver
Gaussian Belief Propagation (GBP) with a continuous-time formulation, specifically
utilizing Z-splines. The approach aims to enhance robustness and e�ciency in multi-
robot systems. The method is validated using a real-world dataset and compared
against traditional NLLS solvers. Results demonstrate that GBP with continuous-
time representation outperforms NLLS in handling perturbations, providing more
stable and e�cient optimization.

iii

Symbols

Symbols

r̄ weighted residuals

µ mean

⌃ covariance matrix

⌘ information vector

⇤ precision matrix

✓i optimization parameters

mfi!nj factor-to-node message

N�1 Gaussian distribution in canonical form

N Mixed Gaussian Representation for Lie groups

↵nj step size for node update

↵fi step size for factor update

Acronyms and Abbreviations

SLAM Simultaneous Localization and Mapping

GBP Gaussian Belief Propagation

NLLS Non-Linear Least Squares

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

ADMM Alternating Direction Method of Multipliers

DoF Degree of Freedom

RMSE Root Mean Square Error

PnP Perspective-n-Point

BA Bundle Adjustment

1

Chapter 1

Introduction

In the realm of robotics, Simultaneous Localization and Mapping (SLAM) is crucial
for enabling robots to generate a map of an unknown environment while simultane-
ously tracking their pose within it. Conventional SLAM approaches have predom-
inantly utilized discrete-time formulations and have leveraged a range of sensors,
including visual cameras [1], IMUs [2], and LiDAR [3]. While these discrete meth-
ods have demonstrated strengths in various applications, they also present notable
limitations.
Traditionally, SLAM optimizes a discrete set of key frames to manage the non-
continuous acquisition of sensor data and to control the growth of the optimization
problem. This approach has made discrete formulations popular for many robotics
applications due to their e↵ectiveness in handling sensor data. However, discrete
optimization does not account for inter-state motion, leading to quantization errors
when integrating or synchronizing asynchronous data from multiple sensors. For
example, IMU data often requires pre-integration to align with other constraints
[4], and LiDAR scan lines or rolling-shutter cameras face challenges with timing
discrepancies between measurements.
To address these issues, continuous-time approaches that use splines to represent
motion have been proposed [3, 5]. These methods can e↵ectively utilize asyn-
chronous data to optimize spline states. However, many of these approaches rely
on conventional Non-Linear Least Squares (NLLS) solvers, which are centralized
and require re-solving the problem each time new measurements are obtained from
asynchronous sensors.
These limitations become increasingly problematic in multi-robot systems, where
both asynchronous data from intermittent robot communication and the centralized
nature of traditional SLAM solvers create bottlenecks. To overcome these challenges
and improve real-time performance and resource utilization, distributed solving
methods like Gaussian Belief Propagation (GBP) have emerged [6].
Our project addresses these challenges by employing a continuous-time representa-
tion for SLAM, specifically leveraging GBP frameworks. This approach is motivated
by the need to handle asynchronous sensor data e↵ectively while maintaining robust
and e�cient optimization in distributed systems. Continuous-time SLAM o↵ers a
more natural and flexible framework for integrating sensor data acquired at irregu-
lar intervals, providing significant advantages over discrete-time methods, especially
in distributed multi-robot systems.

2

Chapter 2

Related Work

SLAM (Simultaneous Localization and Mapping) has traditionally focused on discrete-
time approaches, demonstrating promising performance in both monocular [2, 7]
and stereo setups [1]. Additionally, discrete-time SLAM has been e↵ectively com-
bined with various sensing modalities, such as IMUs [8, 9] and LiDAR [3], to enhance
its robustness and accuracy.
In contrast to these well-established discrete-time SLAM methods, continuous-time
SLAM techniques have emerged, o↵ering significant potential for continuous motion
estimation and high-fidelity results [10, 5, 11]. Continuous-time SLAM methods are
designed to seamlessly integrate unsynchronized and asynchronous measurements
throughout the estimation process. Despite these advantages, many continuous-
time SLAM techniques still face challenges related to computational e�ciency and
convergence. Addressing these issues remains a key area of ongoing research.
Beyond fundamental SLAM research focused on single agents, a new challenge has
emerged in deploying these techniques in collaborative multi-agent systems. Pre-
vious work, such as [?], has explored methods for centralized multi-agent SLAM.
Strategies for distributed NLLS optimizations often employ approaches like the Al-
ternating Direction Method of Multipliers (ADMM), as proposed in [12] and [13].
ADMM approaches utilize dual residuals to ensure consistent estimates across dis-
tributed NLLS optimizations.
Alternatively, Gaussian Belief Propagation (GBP) methods [14, 15, 6] provide an ef-
ficient framework for distributed and asynchronous state inference through message-
passing. GBP is particularly suited for multi-agent SLAM due to its ability to
propagate beliefs across a network of agents. Furthermore, GBP has been applied
to continuous-time formulations in works like [16], which utilize B-splines and Z-
splines to represent motion. Despite these advancements, there remains a lack of
comprehensive verification across various scenarios.
In this project, we build on these concepts by integrating distributed GBP opti-
mization with continuous-time parameterization. We aim to verify the e↵ectiveness
of this combined approach in practical applications, addressing the gaps identified
in current research.

3

Chapter 3

Methodology

3.1 Continuous Time Parameterization

Many studies have explored continuous-time representations in conventional SLAM
algorithms, with cubic Z-splines being a common parameterization for motion. An
analytic continuous spline can be defined by control points, where each segment of
the spline is associated with a set of control points {Bi, . . . , Bi+k}. Here, k denotes
the Degree of Freedom (DoF) of the Z-spline, which is set to 4 in this project.
Starting from the world-to-body transformation of the first control point Twi(t) 2
SE(3), the transformation of a query point can be computed as an interpolation
between the motions of the control points, with coe�cients found in [17].

Twb (t) =


Rwb (qwb (t)) twb (t)

0 1

�
2 SE(3) with (3.1)

qwb (t) = qwi ⇤
kY

j=1

⇣
q�1
w(i+j�1) ⇤ qw(i+j)

⌘�j(t)
(3.2)

twb (t) = twi +
kX

j=1

⇥
�j(t)

�
tw(i+j) � tw(i+j�1)

�⇤
, (3.3)

3.2 Continuous Time Optimization

Since the data received from the sensors are noisy, various SLAM algorithms fo-
cus on minimizing the cost function by optimizing parameters ⇥. Most methods
solve the optimal solution by minimizing the summation of the weighted residuals
from the measurements. Weighted residuals r are the di↵erence between predicted
measurements based on the sensor parameters and real measurements. These resid-
uals are weighted by the square-root information matrix ⌦m, which reflects the
characteristics of the sensors to balance each residual. The conventional method,
Non-linear Least Squares (NLLS) solvers, aims to obtain optimal parameters by
minimizing the sum of residual costs as shown below:

r(t,✓s) = m̂(t,✓s)�µ m(t) and (3.4)

kr̄k2 = r̄>r̄ = r>⌦>
m⌦mr = r>⇤mr = r>⌃�1

m r, (3.5)

⇥⇤ = argmin
⇥

X
s2S

X
t2Ts

1

2
kr̄(t,✓s)k2

�
. (3.6)

4

5 3.3. Gaussian Belief Propagation

where ⌃m and ⇤m are covariance and precision matrices.
By using a probabilistic formulation, the non-linear optimization problem can also
be represented as a product of factors fi / e�Ei(✓i) with induced energies Ei(✓i).

⇥⇤ = argmax
⇥

log (p (⇥)) = argmin
⇥

X

i

Ei(ti,✓i) with (3.7)

p (⇥) =
Y

i

fi (ti,✓i) /
Y

i

e�Ei(ti,✓i). (3.8)

The weighted residual r̄i can be approximated by Taylor expansions in ✓i around
a linearization point ✓0

i .

r̄i(✓i)� r̄i(✓
0
i) ⇡ Dr̄i(✓

0
i) (✓i � ✓0

i) = J̄
0
i (✓i � ✓0

i) = J̄
0
i ⌧

0
i . (3.9)

Since a multivariate Gaussian N (µi,⌃i) is used to model the factors, the energy
of the factors, which is the norm of weighted residuals as defined in eq. (3.5), can
be converted to the incremental information form N�1(⌘0

i ,⇤
0
i).

Ei(ti,✓i) = kr̄ik2 = r>i (ti,✓i)⇤iri(ti,✓i). (3.10)

Ei(ti, ⌧
0
i) ⇡

1

2
⌧ 0,>
i ⇤0

i ⌧
0
i � ⌧ 0,>

i ⌘0
i where (3.11)

⌘0
i = �J̄

0,>
i r̄0i and ⇤0

i = J̄
0,>
i J̄

0
i . (3.12)

These representations of factors and the usage of the canonical form of Gaussian
N�1 are vital for e�cient conditioning and marginalization in the steps of the GBP
algorithm, which is presented in the next section.

3.3 Gaussian Belief Propagation

Figure 3.1: Factor Graph

As shown in fig. 3.1, SLAM scenarios can be represented as a factor graph, where
sensor measurements become factors, and visual features and robot poses become
nodes. Unlike other solving methods, Gaussian belief propagation considers the
uncertainty of the nodes by assuming a Gaussian distribution. Thus, the covariance
of each node is included in the factor graph, consisting of factors fi ⇠ N�1(⌘fi ,⇤fi)
and nodes nj ⇠ N (µnj ,⌃nj) = N�1(⌘nj ,⇤nj). The canonical form of the Gaussian
distribution is used to compute the product of probabilities easily. Gaussian belief
propagation mainly consists of four steps to update each node and factor, and
propagate the belief through iterative message passing. Details of each step are
elaborated in the following.

Chapter 3. Methodology 6

3.3.1 Node Updates

First, the Gaussian nodes in the graph nj 2 G are updated through neighboring
factors fi 2 N(nj) by taking a product over incoming factor-to-node messages
mfi!nj . Since we use the canonical form of Gaussians, where the information
vector ⌘ lies in a vector space, we can convert the product to a simple summation
by adding it to the prior node belief P (nj) = N�1(⌘p

nj
,⇤p

nj
).

⌘nj
= ⌘p

nj
+

X

fi2N(nj)

⌘fi!nj
and ⇤nj = ⇤p

nj
+

X

fi2N(nj)

⇤fi!nj . (3.13)

The above equation can be perfectly applied in vector space states, such as landmark
positions. However, for Lie groups G, which are extensively used in robotics for
poses, the operators � : G ⇥G 7! g and � : G ⇥ g 7! G rely on the tangent space
g. Therefore, the above expression cannot be directly used for Lie groups. Instead,
frame conversion and computing the increment of the factor-to-node messages on
the tangent space are required to propagate all beliefs.
Thus, Lie group nodes follow the process proposed by Murai Murai et al. [15], using
Mixed Gaussian Representation (MGR) by parameterizing it as nj ⇠ N(µnj

,⇤nj),
where µnj

2 G and ⇤nj 2 R[dim(g)⇥dim(g)]. The incoming message from a factor
is also represented as mfi!nj ⇠ N(µfi!nj

,⇤fi!nj) to maintain the same form. In
MGR formulation, the precision matrices are expressed in their associated elements
in the Lie group. Consequently, the messages should be converted to the privileged
frame µ0

nj
and ⇤0

nj
, which represent the latest estimate of the node’s state.

⌧ 0
fi!nj

= µfi!nj
� µ0

nj
2 Rdim(g) (3.14)

⇤0
fi!nj

=

"
@⌧ 0

fi!nj

@µfi!nj

#>

⇤fi!nj

"
@⌧ 0

fi!nj

@µfi!nj

#
2 Rdim(g)⇥dim(g) (3.15)

After converting the frame, the elements of ⌧ 0
fi!nj

and ⇤0
fi!nj

are in the tangent
space relative to the privileged frame, which is a vector space. Therefore, the
increments from messages can now be computed by summing in the same way as
in eq. (3.13).

⌧+
nj

= ↵nj

X

fi2N(nj)

⇤0
fi!nj

⌧ 0
fi!nj

and ⇤+
nj

=
X

fi2N(nj)

⇤0
fi!nj

, (3.16)

Where ↵nj denotes the step size. These increments are warped back to the updated
frame, resulting in the updated state of the node.

µnj
= µ0

nj
� ⌧+

nj
and ⇤nj =


@µnj

@⌧+
nj

�>
⇤+

nj


@µnj

@⌧+
nj

�
. (3.17)

3.3.2 Node-to-factor Messages

The message from node to factor is generated analogously to eq. (3.16), di↵ering only
in that the increment from the target factor is excluded from the sums. However,
since this process follows the node update, frame conversion to the latest state
estimate must be carried out by reevaluating eq. (3.14) and eq. (3.15) first.

7 3.3. Gaussian Belief Propagation

⌧+
nj!fk

=
X

fi2N(nj)\fk

⌧ 0
fi!nj

and ⇤+
nj!fk

=
X

fi2N(nj)\fk

⇤0
fi!nj

(3.18)

The outgoing message involves these values and their respective linearization point
µ0

nj
, by the triplet (µ0

nj
, ⌧+

nj!fk
,⇤+

nj!fk
).

3.3.3 Factor Updates

In analogy to the node update, the factor is updated by incoming messages from
neighboring nodes N(fi). Before the update, the belief of the factor B(fi) =
N�1(⌘0

fi
,⇤0

fi) is evaluated by eq. (3.12) from the cost function. So the intermediate

quantities ⌘0
fi

and ⇤0
fi are defined as

⌘0
fi = ⌘0

fi + ⌧+
N(fi)!fi

and ⇤0
fi = ⇤0

fi +⇤+
N(fi)!fi

(3.19)

⌘+
N(fi)!fi

and ⇤+
N(fi)!fi

denote the stacked vector and block diagonal matrix of
the neighboring nodes’ messages to the factor.

3.3.4 Factor-to-Node Messages

In this step, the factor is assumed to have a connection with two nodes. This
approach can be similarly applied to a single connection or extended to more than
two nodes. The updated states of the factor are as follows:

⌘0
fi =


⌘0
a

⌘0
b

�
= ⌘0

fi +


⌘+
na!fi

⌘+
nb!fi

�
(3.20)

⇤0
fi =


⇤0

aa ⇤0>
ba

⇤0
ba ⇤0

bb

�
= ⇤0

fi +


⇤+

na!fi
0

0 ⇤+
nb!fi

�
. (3.21)

To obtain a message mfi!na = N(µfi!na
,⇤fi!na), the remaining nodes should

be marginalized by the Schur complement.

⌘0
fi!na

= ⌘0
a �⇤0>

ba⇤
0�1
bb ⌘0

b and ⇤0
fi!na

= ⇤0
aa �⇤0>

ba⇤
0�1
bb ⇤0

ba. (3.22)

In the same way, mfi!nb can also be obtained by permuting ⌘0
fi

and ⇤0
fi to

marginalize na.


⌘0
b

⌘0
a

�
= P⌘0

fi and


⇤0

bb ⇤0>
ab

⇤0
ab ⇤0

aa

�
= P⇤0

fiP
>, (3.23)

In analogy to eq. (3.17), the incremental values ⌘0
fi!na

and ⇤0
fi!na

should be
converted into the updated outgoing frame of reference, which becomes a factor-to-
node message mfi!na . Step size ↵fi is used in this case as well.

⌧ 0
fi!na

= ↵fi⇤
0�1
fi!na

⌘0
fi!na

2 Rdim(g), µfi!na
= µ0

na
� ⌧ 0

fi!na
2 G (3.24)

and ⇤fi!na =

"
@µfi!na

@⌧ 0
fi!na

#>

⇤0
fi!na

"
@µfi!na

@⌧ 0
fi!na

#
2 Rdim(g)⇥dim(g). (3.25)

Chapter 4

Experiment

In this project, the framework for the GBP algorithm with continuous time formu-
lation, Hyperion [16], was used. Initially, there was a misapplication in the node
update step, where the increment ⌧ and information vector ⌘ for vector space nodes
were incorrectly converted. Only the SE(3) nodes functioned correctly. This issue
was resolved during the project and verified using both simulation and real-world
datasets. To compare the GBP solver against the centralized NLLS solver, the
established framework, Ceres, was used.

4.1 Simulation

The GBP algorithm for continuous time representation of visual features was verified
by simulating a triangulation scenario using stereo poses. In this simulation, visual
features were represented by a 6x4 grid of board landmarks. Initially, both the
landmarks and one of the stereo poses were perturbed. GBP was then applied
to minimize the residual between the pixel measurements and the projected pixels
from the estimated landmarks. To compare the performance of GBP with the
NLLS solver, synchronized data updates were used, and the tests were conducted
with NLLS as well. Both the landmarks and the pose were initialized with identical
perturbations of 0.5 meters in translation and 0.5 radians in rotation. This setup
allowed for a thorough comparison of the two methods under controlled conditions.

(a) Initial Perturbed Setup (b) Converged Result (c) Convergence

Figure 4.1: Estimated pose(arrow) and landmarks(square) in simulation with a 0.5
m/rad perturbation. GBP(blue) converges into the ground truth(green).

As the residuals of all factors, defined by eq. (3.11), are accumulated in each iter-
ation, the convergence can be assessed by evaluating the cumulative cost of these
residuals. The simulation results indicate that both the GBP and NLLS solvers
converge to the same optimal solution, even under high perturbation. However,

8

9 4.2. Dataset

since GBP estimates uncertainty using the covariance of the nodes—an aspect not
considered by NLLS—the convergence rate of GBP is slower compared to NLLS.

4.2 Dataset

To validate the algorithm with a real-world dataset, three videos featuring a 6x6
AprilTag grid board were recorded using a ZED X stereo camera. The ground truth
of the SE(3) camera pose was obtained from the detected AprilTag corners, which
lie on the same plane, using the Perspective-n-Point (PnP) algorithm. Additionally,
the ground truth positions of the AprilTag corners, considered as landmarks, were
extracted using Bundle Adjustment (BA) across all video frames. The evaluation
metric employed is the Root Mean Square Error (RMSE) in both translation and
orientation of the estimated poses. Since the data was captured with a stereo
camera, to assess the convergence of the non-linear optimization solver, the poses
and landmarks were perturbed, while the first frame poses were kept fixed.

4.3 Discrete Time

Before testing the GBP algorithm with the continuous time formulation, the algo-
rithm was first evaluated in discrete time to verify the dataset. Since GBP estimates
the uncertainty of the nodes, the initial covariance for each node must be initialized
appropriately. To determine the optimal value for the initial covariance, various
setups were tested across three datasets. The step sizes during node updates ↵nj

and factor updates ↵fi were set to 0.8, and a perturbation of 0.1 m/rad was applied
to both the poses and landmarks.

Figure 4.2: Simulation in Discrete time GBP setup with initial covariance ranging
from 0.01 to 100 times the identity matrix. Convergence through iterations is shown
by cumulative cost of residuals, as defined in eq. (3.11).

The convergence status and rate, as shown in fig. 4.4, can vary depending on the
initial covariance. Both the NLLS solver and GBP with identity initial covariance
exhibited a similar trend: they initially increased slightly before eventually converg-
ing. In contrast, using an initial covariance scaled by 0.1 led to convergence without
any fluctuations. Since the step sizes for node updates and factor updates in GBP
are fixed, GBP converges more slowly to the optimal solution compared to NLLS,
which converges rapidly. The estimation of covariance in GBP also contributes to
its slower convergence rate.
GBP has now been tested under various perturbation setups with an initial covari-
ance of 0.1 times the identity matrix. Three datasets were used in this experiment,

Chapter 4. Experiment 10

and the accumulated RMSEs of the optimized poses were compared to those ob-
tained using the NLLS solver, as shown below.

Table 4.1: Root Mean Square Errors (RMSEs) in rotation and translation result-
ing from GBP and NLLS solvers under di↵erent perturbation levels across three
datasets. The solver runs to converge or terminate after 50 iterations.

Perturbation Scene 1 Scene 2 Scene 3
[m/rad] GBP NLLS GBP NLLS GBP NLLS

Rotation [rad]
0.1 0.040 0.039 0.048 0.048 0.046 0.046
0.25 0.042 0.039 0.049 0.049 0.046 0.046
0.5 0.042 0.568 0.049 0.497 0.046 0.418

Translation [m]
0.1 0.033 0.034 0.034 0.034 0.042 0.042
0.25 0.041 0.034 0.034 0.034 0.042 0.042
0.5 0.047 1.466 0.034 0.590 0.042 0.537

For all datasets, GBP successfully converged with perturbations up to 0.5 m/rad,
whereas the NLLS solver diverged in all cases. The initial perturbed setup and the
results after 50 iterations are visualized in fig. 4.3. While the optimized poses and
landmarks diverged in NLLS, GBP consistently produced results that were closer
to the ground truth.

(a) Initial Perturbed Setup (b) Optimized Result

Figure 4.3: Estimated pose(arrow) and landmarks(square) for Scene 1 with a 0.5
m/rad perturbation in discrete time. The optimized result after 50 iterations shows
GBP(blue) converges to the ground truth(green) while NLLS(red) diverges.

4.4 Continuous Time

For the continuous time formulation, a 4-degree-of-freedom Z-spline was used. The
control points of the spline were spaced at 200 ms intervals, corresponding to a data
sampling rate of 10 Hz. As in the discrete time approach, the initial covariance in
GBP was tested first. The step sizes for node updates and factor updates were set
to 0.4 and 0.7, respectively.
Similar to the discrete time case, using an initial covariance of either the identity
matrix or 0.1 times the identity matrix resulted in stable convergence. However,
NLLS and some instances of GBP exhibited fluctuations near the optimal solution.
Since each pose is represented by four control point nodes, all factors are connected
to these nodes, complicating the graph structure with additional optimizable pa-

11 4.4. Continuous Time

Figure 4.4: Convergence of the continuous time GBP setup with initial covariance
ranging from 0.01 to 100 times the identity matrix.

rameters. The initial covariance with the identity matrix was used for testing with
perturbations.
All three datasets were tested with various perturbation setups for GBP and NLLS.
Only the 0.1 m/rad perturbation in Scene 1 achieved convergence, while the other
perturbation levels led to divergence in both methods. In Scene 1, landmarks were
uniformly captured by both stereo cameras across all frames. In contrast, Scenes 2
and 3 involved rapid movements, leading to dropout of landmark measurements.

(a) Initial Perturbed Setup (b) Converged Result

Figure 4.5: Estimated pose(line) and landmarks(square) of Scene 1 with a 0.1 m/rad
perturbation in continuous time. The optimized results after 50 iterations show that
GBP(blue) and NLLS(red) converge to the ground truth(green).

As shown in fig. 4.5, the converged trajectory defined by the spline intuitively
represents the camera’s motion in continuous time. The landmarks also converged
to the grid-aligned ground truth.

Chapter 4. Experiment 12

Table 4.2: Root Mean Square Errors (RMSEs) in rotation and translation resulting
from GBP and NLLS solver with a 0.1 m/rad perturbation in Scene 1.

Continuous Time Discrete Time
GBP NLLS GBP NLLS

Rotation [rad] 0.044 0.041 0.040 0.0390

Translation [m] 0.045 0.038 0.033 0.034

To compare the results of the continuous time and discrete time setups under the
same perturbation of 0.1 m/rad, the RMSEs for the discrete time formulation were
lower than those for the continuous time formulation in both rotation and transla-
tion errors. Since the dataset consisted of synchronized stereo images, the advantage
of the continuous time representation designed to handle high-rate or asynchronous
data did not become evident in this case.

Chapter 5

Conclusion

In this project, the GBP framework with continuous time representation using Z-
splines has been validated using a dataset featuring an AprilTag grid board. The
e↵ectiveness of our method, which leverages visual features, was demonstrated in
comparison to a conventional NLLS solver, showing superior robustness to per-
turbations, particularly in discrete time formulations. Since GBP estimates the
uncertainty of the nodes, the initial covariance can significantly influence both the
convergence rate and the stability of the optimization process. As the number of
nodes, defined by control points that shape the spline motion, increases, the com-
plexity of the graph grows, making the optimization problem more challenging to
solve.
To enhance the stability of the GBP framework in continuous time, further analysis
is required on hyperparameters such as the sampling time of control points and step
sizes during node and factor updates. Implementing and testing the method in a
distributed system with asynchronous data will also be crucial to fully demonstrate
its e↵ectiveness and robustness in real-world applications.

13

Bibliography

[1] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based frame-
work for global pose estimation with multiple sensors,” arXiv preprint
arXiv:1901.03642, 2019.

[2] C. Campos, R. Elvira, J. J. G. Rodŕıguez, J. M. Montiel, and J. D. Tardós,
“Orb-slam3: An accurate open-source library for visual, visual–inertial, and
multimap slam,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874–
1890, 2021.

[3] D. Droeschel and S. Behnke, “E�cient continuous-time slam for 3d lidar-based
online mapping,” in 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2018, pp. 5000–5007.

[4] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “Imu preintegration
on manifold for e�cient visual-inertial maximum-a-posteriori estimation,” in
Robotics: Science and Systems XI, 2015.

[5] P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch estimation
using temporal basis functions,” in 2012 IEEE International Conference on
Robotics and Automation. IEEE, 2012, pp. 2088–2095.

[6] J. Ortiz, T. Evans, and A. J. Davison, “A visual introduction to gaussian belief
propagation,” arXiv preprint arXiv:2107.02308, 2021.

[7] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” IEEE transactions on robotics, vol. 34, no. 4,
pp. 1004–1020, 2018.

[8] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated ex-
tended kalman filter based visual-inertial odometry using direct photometric
feedback,” The International Journal of Robotics Research, vol. 36, no. 10, pp.
1053–1072, 2017.

[9] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-
based visual–inertial odometry using nonlinear optimization,” The Interna-
tional Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, 2015.

[10] S. Anderson, F. Dellaert, and T. D. Barfoot, “A hierarchical wavelet decom-
position for continuous-time slam,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 373–380.

[11] S. Lovegrove, A. Patron-Perez, and G. Sibley, “Spline fusion: A continuous-
time representation for visual-inertial fusion with application to rolling shutter
cameras.” in BMVC, vol. 2, no. 5, 2013, p. 8.

14

15 Bibliography

[12] Z. Peng, Y. Xu, M. Yan, and W. Yin, “Arock: an algorithmic framework
for asynchronous parallel coordinate updates,” SIAM Journal on Scientific
Computing, vol. 38, no. 5, pp. A2851–A2879, 2016.

[13] P. Bänninger, I. Alzugaray, M. Karrer, and M. Chli, “Cross-agent relocalization
for decentralized collaborative slam,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023, pp. 5551–5557.

[14] A. J. Davison and J. Ortiz, “Futuremapping 2: Gaussian belief propagation
for spatial ai,” arXiv preprint arXiv:1910.14139, 2019.

[15] R. Murai, J. Ortiz, S. Saeedi, P. H. Kelly, and A. J. Davison, “A robot web for
distributed many-device localisation,” IEEE Transactions on Robotics, 2023.

[16] D. Hug, I. Alzugaray, and M. Chli, “Hyperion-a fast, versatile symbolic gaus-
sian belief propagation framework for continuous-time slam,” arXiv preprint
arXiv:2407.07074, 2024.

[17] J. T. Becerra-Sagredo, “Z-splines: moment conserving cardinal spline interpo-
lation of compact support for arbitrarily spaced data,” SAM Research Report,
vol. 2003, 2003.

Bibliography 16

	Abstract
	Symbols
	Introduction
	Related Work
	Methodology
	Continuous Time Parameterization
	Continuous Time Optimization
	Gaussian Belief Propagation
	Node Updates
	Node-to-factor Messages
	Factor Updates
	Factor-to-Node Messages

	Experiment
	Simulation
	Dataset
	Discrete Time
	Continuous Time

	Conclusion
	Bibliography

