



## **Hyesu Jang**

dortz@snu.ac.kr

**Ayoung Kim** ayoungk@snu.ac.kr

# ICRA2024

May 13-17, Yokohama, Japan

ROBOTICS

## Motivation

- Yaw rate estimation with mmWave radar is challenging
- Most radar odometry methods rely on integrating lacksquaresensors or learning-based techniques
- Heatmap-based key-point matching is not attempted

# Contributions

**Non-learning mmWave radar-only 2D ego-motion**  $\bullet$ estimation without prior knowledge Heatmap Clutter matching via feature sampling and  $\bullet$ **bidirectional mean ICP** 

## Pipeline

**Exploit 2D linear velocity for translation rectification to enhance yaw rate estimation** 





# Methodology

**2D Linear Velocity Estimation** 





Heatmap Preprocessing 

Estimate yaw rate in intensity heatmap from cascade radar via feature point matching

**Time Synchronization for Translation Rectification** 

**Compensate the time difference between single-chip and cascade radars** 

**Rectify translational error by estimated linear velocity from single-chip radar** 







Feature Sampling and Two-Way Weighted ICP

Extract the key points from distance function to ensure the fast convergence

To assure robustness for clutter size, conduct bidirectional intensity weighted ICP (wICP)



- **Preprocessing Methods** 
  - 2 Sequences from ColoRadar<sup>[2]</sup> Dataset



Yaw Rate Estimation

**Preprocessing with Top k + Sampling** 



**2D Planar Odometry** 





## **Challenging Scenes**

1. Unstable features with no suitable target

• Scene with numerous small objects

### 2. Curvature distortion of close points

Narrow hallway scene



**1. Unstable Features** 2. Curvature Distortion

| _ | Dalasel                          | WICP   | Sampling + wicp | Sampling + mwiCP |  |
|---|----------------------------------|--------|-----------------|------------------|--|
| • | EC Hallways 0                    | 0.0836 | 0.0124          | 0.0086           |  |
|   | Aspen 5                          | 0.0505 | 0.0077          | 0.0066           |  |
|   | Table 2: Relative Pose Error [m] |        |                 |                  |  |

## **Conclusion & Future Works**

- mmWave radar-only 2d ego-motion estimation
- Feature point registration via mean weighted ICP
- Cascade radar heatmap utilization to address the limitation of yaw ra te estimation in mmWave radar
- **Single chip radar-only to perform ego-motion estimation**

#### Acknowledgement

This work was supported by the MOTIE (1415187329), Korea.

#### References

[1] Y. Zhou, L. Liu, H. Zhao, M. L'opez-Ben' itez, L. Yu, and Y. Yue, "Towards deep radar perception for autonomous driving: Datasets, methods, and challenges," Sensors, vol. 22, no. 11, p. 4208, 2022.

[2] A. Kramer, K. Harlow, C. Williams, and C. Heckman, "Coloradar: The direct 3d millimeter wave radar dataset," The International Journal of Robotics Research, vol. 41, no. 4, pp. 351–360, 2022.